UG/5th Sem/G/21/CBCS

U.G. 5th Semester Examination 2021 MATHEMATICS (General)
 Paper : DSE-1
 (CBCS)

Full Marks : 32
Time : 2 Hours

The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

DSE-1A
 [Abstract \& Linear Algebra]
 Group-A
 (4 Marks)

1. Answer any four questions : $4 \times 1=4$
(a) Show that the set of vectors $\{(0,1,1),(1,0,1),(1,1,0)\}$ is linearly independent in \mathbb{R}^{3}.
(b) State Cayley-Hamilton theorem for a square matrix.
(c) Find the eigenvalues of the matrix : $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
(d) What is the order of the symmetric group S_{n} ?
(e) Let $T: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\mathrm{T}(\mathrm{x})=\mathrm{x}^{2}$. Is T a linear transformation?
(f) Find all the unit elements in the ring $\left(\mathbb{Z}_{8},+, \ldots ..\right)$.
(g) Find the power set of the set $S=\{1,2,3\}$.

Group - B

(10 Marks)

Answer any two questions :
2. (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=5 x+1$. Examine if f is a bijective function.
(b) A relation ρ is defined on the set \mathbb{Z} by " $a \rho b$ if and only if $a-b$ is divisible by 5 " for $a, b \in \mathbb{Z}$. Examine if ρ is an equivalance relation on \mathbb{Z}.
3. Prove that the set $\mathbb{Z}_{5}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ forms a group with respect to addition modulo 5 .
4. Show that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+y, y+z, z+x),(x, y, z) \in \mathbb{R}^{3}$ is a linear transformation. Find $\operatorname{Ker} T$ and ImT. 5
5. Find the eigenvalues and the corresponding eigenvectors of the matrix :

$$
\left(\begin{array}{lll}
1 & -1 & 2 \\
2 & -2 & 4 \\
3 & -3 & 6
\end{array}\right)
$$

Group - C

(18 Marks)

Answer any two questions:
6. (a) Prove that the characteristic of an integral domain is either zero or a prime number.
(b) A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is defined by

$$
T(x, y, z)=(x+y, y+z),(x, y, z) \in \mathbb{R}^{3}
$$

Find the matrix of T relative to the ordered bases $\{(1,0,0),(0,1,0),(0,0,1)\}$ of \mathbb{R}^{3} to the ordered bases $\{(1,0),(0,1)\}$ of \mathbb{R}^{2}.
7. (a) Use Cayley-Hamilton theorem to find A^{50}, where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(b) Prove that the set $S=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a+b+c+d=0\right\}$ is a subspace of $M_{2}(\mathbb{R})$.
8. (a) Prove that the function $<,>: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by
$\langle\boldsymbol{u}, \boldsymbol{v}\rangle=2 u_{1} v_{1}+u_{1} v_{2}+u_{2} v_{1}+u_{2} v_{2}$ for all $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{2}$.
where $\boldsymbol{u}=\left(u_{1}, u_{2}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ is an inner product on \mathbb{R}^{2}.
(b) Prove that a field is an integral domain. Give an example of an integral domain which is not a field.

DSE-1B

[Differential Equation II \& Mechanics]

Full Marks : 32
Time : 2 Hours

The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group - A

(4 Marks)

1. Answer any four questions:
(a) Determine whether $x=0$ is an ordinary point or regular singular point of the differential equation $2 x^{2} D^{2} y+7 x(x+1) D y+3 y=0, D \equiv \frac{d}{d x}$.
(b) Solve $x p-y q=x y$ by Lagrange's method.
(c) Obtain partial differential equation from $z=f(\sin x+\cos y)$.
(d) The velocity of a particle moving in a straight line at any time instant ' t ' when its distance from the origin x, is given by $x=\frac{1}{2} v^{2}$. Show that the acceleration of the particle is constant.
(e) Find a complete integral of $z=p q$.
(f) What is degrees of freedom.
(g) What is the order of the equation $x y^{3}\left(\frac{\partial y}{\partial x}\right)^{2}+y x^{2}+\frac{\partial y}{\partial x}=0$?

Group - B

(10 Marks)

Answer any two questions :
2. Find the power series solution of the equation $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-x y=0$ in powers of x. (about a point $x=0$)
3. Use charpits method, find a complete integral of $p x y+p q+q y-y z=0$.
4. A particle is projected vertically upwards with a velocity v from earths surface. If h and H be the greatest heights attained by the particle moving under uniform and variable accelerations respectively. Then show that $\frac{1}{h}-\frac{1}{H}=\frac{1}{R}$, where $R=$ radius of earth.
5. Let t_{1} and t_{2} be the periods of vertical oscillations of two different weights suspended by an elastic string and c_{1} and c_{2} be the statical extensions due to these weights. Prove that $g\left(t_{1}^{2}-t_{2}^{2}\right)=4 \pi\left(c_{1}-c_{2}\right)$.

Group - C

(18 Marks)
Answer any two questions:
6. (a) A particle moves under a force $m \mu\left\{3 a u^{4}-2\left(a^{2}+h^{2}\right) u^{5}\right\}(a>b)$ and is projected from an apne at a distance $a+b$ with velocity $\frac{\sqrt{\mu}}{a+b}$. Show that its orbit $r=a+b \cos \theta$.
(b) The middle points of opposite sides of quadrilatteral formed by four freely jointed weightless bars are connected by two light rods of lengths l and l^{\prime} in a state of tension. If T, T^{\prime} be the tension in these rods prove that $\frac{T}{l}+\frac{T^{\prime}}{l^{\prime}}=0.5+4$
7. (a) Find the complete solution of the equation $z=p x+q y+p^{2}+q^{2}$ by Charpit's method. 5
(b) Find the eigen value and corresponding eigen functions of $\frac{d^{2} y}{d x^{2}}+\lambda y d x=0(\lambda>0)$ with the boundary conditions $y(0)=1, y^{\prime}(\pi)=0$.
8. (a) If the radial and cross radial vlocities of a particle be respectively $\mu \theta$ and λr. Show that the path of a particle can be represented by an equation of the form $r=A \theta^{2}+B$. 5
(b) A particle describe a parabola $r=a \sec ^{2}\left(\frac{\theta}{2}\right)$ such that cross-radial velocity is constant. Show that $\frac{d^{2} r}{d t^{2}}$ is constant.

